Increased superoxide leads to decreased flow-induced dilation in resistance arteries of Mn-SOD-deficient mice.
نویسندگان
چکیده
The role of mitochondrial manganese-superoxide dismutase (Mn-SOD) in the maintenance of vascular function has not yet been studied. Thus we examined flow- and agonist-induced dilations in isolated mesenteric arteries (approximately 90 microm in diameter) of Mn-SOD heterozygous (Mn-SOD+/-) and wild-type (WT) mice. Increases in flow elicited dilations in all vessels, but the magnitude of the dilation was significantly less in vessels of Mn-SOD+/- mice than in those of WT mice (64 vs. 74% of passive diameter). N(omega)-nitro-L-arginine methyl ester inhibited the dilation in vessels of WT mice but had no effect on vessels of Mn-SOD+/- mice. Tempol or tiron (superoxide scavengers) increased flow-induced dilation in vessels of Mn-SOD+/- mice. Acetylcholine- and sodium nitroprusside-induced, but not adenosine-induced, dilations were also decreased in arteries of Mn-SOD+/- mice. Superoxide levels in the arteries of Mn-SOD+/- mice were significantly increased. Western blot analysis confirmed a 50% reduction of Mn-SOD protein in the vessels of Mn-SOD+/- mice. A 41% reduction in endothelial nitric oxide synthase (eNOS) protein and a 37% reduction in eNOS activity were also found in the vessels of Mn-SOD+/- mice. Whereas there was no difference in eNOS protein in kidney homogenates of WT and Mn-SOD+/- mice, a significant reduction of nitric oxide synthase activity was found in Mn-SOD+/- mice, which could be restored by the administration of tiron. We conclude that an increased concentration of superoxide due to reduced activity of Mn-SOD, which inactivates nitric oxide and inhibits eNOS activity, contributes to the impaired vasodilator function of isolated mesenteric arteries of Mn-SOD+/- mice. These results suggest that Mn-SOD contributes significantly to the regulation of vascular function.
منابع مشابه
Selective cerebral vascular dysfunction in Mn-SOD-deficient mice.
We tested the hypothesis that the mitochondrial form of superoxide dismutase [manganese superoxide dismutase (Mn-SOD)] protects the cerebral vasculature. Basilar arteries (baseline diameter approximately 140 microm) from mice were isolated, cannulated, and pressurized to measure vessel diameter. In arteries from C57BL/6 mice preconstricted with U-46619, acetylcholine (ACh; an endothelium-depend...
متن کاملJAP-00939-2005.R2 Selective Cerebral Vascular Dysfunction in Mn-SOD Deficient Mice
We tested the hypothesis that the mitochondrial form of superoxide dismutase (Mn-SOD) protects the cerebral vasculature. Basilar arteries (baseline diameter ~140 μm) from mice were isolated, cannulated and pressurized in order to measure vessel diameter. In arteries from C57BL6 mice preconstricted with U-46619, acetylcholine (Ach, an endothelium-dependent vasodilator) produced dilation that was...
متن کاملAlteration in flow (shear stress)-induced remodelling in rat resistance arteries with aging: improvement by a treatment with hydralazine.
AIMS The link between aging and vascular diseases remains unclear, especially in resistance arteries. As a decreased vasodilator capacity of the endothelium is usually described in aging, we hypothesized that arteriolar remodelling in response to a chronic increase in blood flow might be altered. In addition, we tested the capacity of a vasodilator treatment with hydralazine to restore remodell...
متن کاملShort-term regular aerobic exercise reduces oxidative stress produced by acute in the adipose microvasculature.
High blood pressure has been shown to elicit impaired dilation in the vasculature. The purpose of this investigation was to elucidate the mechanisms through which high pressure may elicit vascular dysfunction and determine the mechanisms through which regular aerobic exercise protects arteries against high pressure. Male C57BL/6J mice were subjected to 2 wk of voluntary running (~6 km/day) for ...
متن کاملChronic high blood flow potentiates shear stress-induced release of NO in arteries of aged rats.
Aging impairs shear-stress-dependent dilation of arteries via increased superoxide production, decreased SOD activity, and decreased activation of endothelial nitric oxide (NO) synthase (eNOS). In the present study, we investigated whether chronic increases in shear stress, elicited by increases in blood flow, would improve vascular endothelial function of aged rats. To this end, second-order m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 288 5 شماره
صفحات -
تاریخ انتشار 2005